208 research outputs found

    The automatic control of numerical integration

    Get PDF

    New Pseudo-Phase Structure for α\alpha-Pu

    Full text link
    In this paper we propose a new pseudo-phase crystal structure, based on an orthorhombic distortion of the diamond structure, for the ground-state α\alpha-phase of plutonium. Electronic-structure calculations in the generalized-gradient approximation give approximately the same total energy for the two structures. Interestingly, our new pseudo-phase structure is the same as the Pu γ\gamma-phase structure except with very different b/a and c/a ratios. We show how the contraction relative to the γ\gamma phase, principally in the zz direction, leads to an α\alpha-like structure in the [0,1,1] plane. This is an important link between two complex structures of plutonium and opens new possibilities for exploring the very rich phase diagram of Pu through theoretical calculations

    The dual nature of 5f electrons and origin of heavy fermions in U compounds

    Full text link
    We develop a theory for the electronic excitations in UPt3_3 which is based on the localization of two of the 5f5f electrons. The remaining ff electron is delocalized and acquires a large effective mass by inducing intra-atomic excitations of the localized ones. The measured deHaas-vanAlphen frequencies of the heavy quasiparticles are explained as well as their anisotropic heavy mass. A model calculation for a small cluster reveals why only the largest of the different 5f5f hopping matrix elements is operative causing the electrons in other orbitals to localize.Comment: 6 pages, 3 figure

    Modeling the actinides with disordered local moments

    Full text link
    A first-principles disordered local moment (DLM) picture within the local-spin-density and coherent potential approximations (LSDA+CPA) of the actinides is presented. The parameter free theory gives an accurate description of bond lengths and bulk modulus. The case of δ\delta-Pu is studied in particular and the calculated density of states is compared to data from photo-electron spectroscopy. The relation between the DLM description, the dynamical mean field approach and spin-polarized magnetically ordered modeling is discussed.Comment: 6 pages, 4 figure

    Thermodynamic stability of Fe/O solid solution at inner-core conditions

    Get PDF
    We present a new technique which allows the fully {\em ab initio} calculation of the chemical potential of a substitutional impurity in a high-temperature crystal, including harmonic and anharmonic lattice vibrations. The technique uses the combination of thermodynamic integration and reference models developed recently for the {\em ab initio} calculation of the free energy of liquids and anharmonic solids. We apply the technique to the case of the substitutional oxygen impurity in h.c.p. iron under Earth's core conditions, which earlier static {\em ab initio} calculations indicated to be thermodynamically very unstable. Our results show that entropic effects arising from the large vibrational amplitude of the oxygen impurity give a major reduction of the oxygen chemical potential, so that oxygen dissolved in h.c.p. iron may be stabilised at concentrations up a few mol % under core conditions

    Reaction of Swiss term premia to monetary policy surprises

    Full text link

    The influence of defects on magnetic properties of fcc-Pu

    Full text link
    The influence of vacancies and interstitial atoms on magnetism in Pu has been considered in frames of the Density Functional Theory (DFT). The relaxation of crystal structure arising due to different types of defects was calculated using the molecular dynamic method with modified embedded atom model (MEAM). The LDA+U+SO (Local Density Approximation with explicit inclusion of Coulomb and spin-orbital interactions) method in matrix invariant form was applied to describe correlation effects in Pu with these types of defects. The calculations show that both vacancies and interstitials give rise to local moments in ff-shell of Pu in good agreement with experimental data for annealed Pu. Magnetism appears due to destroying of delicate balance between spin-orbital and exchange interactions.Comment: 13 pages, 4 figure

    Thermal Equation of State of Tantalum

    Full text link
    We have investigated the thermal equation of state of tantalum from first principles using the Linearized Augmented Plane Wave (LAPW) and pseudopotential methods for pressures up to 300 GPa and temperatures up to 10000 K. The equation of state at zero temperature was computed using LAPW. For finite temperatures, mixed basis pseudopotential computations were performed for 54 atom supercells. The vibrational contributions were obtained by computing the partition function using the particle in a cell model, and the the finite temperature electronic free energy was obtained from the LAPW band structures. We discuss the behavior of thermal equation of state parameters such as the Gr\"uneisen parameter γ\gamma, qq, the thermal expansivity α\alpha, the Anderson-Gr\"uneisen parameter δT\delta_T as functions of pressure and temperature. The calculated Hugoniot shows excellent agreement with shock-wave experiments. An electronic topological transition was found at approximately 200 GPa
    corecore